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Model-Based Feedforward Precompensation and VS-Type 
Robust Nonlinear Postcompensation for Uncertain Robotic 

Systems with/without Knowledge of Uncertainty Bounds (II) 

Sam-Sang, You* and Seok-Kwon, Jeong** 
(Received August 7, I995) 

In this paper, the robust nonlinear controller for an uncertain robot  system is developed and 

characterized with a unified method. Based on deterministic approach, the control structure 

consists of two parts : In the first part, the primary control law is synthesized to precompensate 

for the nominal system ; and in the second part the adaptive version of robust controllers are 

utilized to postcompensate for the system uncertainties. The uncertainties assumed in this papar 

are bounded by higher-order polynomials in the Euclidean norms of  system sta~es without 

knowledge of bounding coefficients. Using the Lyapunov stability theory, we can guarantee that 

all possible responses of the closed-loop system are at least uniformly and ultimately bounded. The 
tracking properties of the control algorithms are verified through numerical simulations, and the 

results show that the proposed controllers are proven to be robust enough for any higher-order 

system uncertainty. 

Key Words : Higher-order Uncertainties, Uncertainty Bounds, Trajectory Tracking, Adaptive 

Law. 

1. Introduct ion 

Robotics and automation technologies provide 

increased productivity in flexible manufacturing 

and services industries. Thus there has been a 

considerable interest in the design of high- 

performance and reliable control algorithms for 

robotic manipulators. It is recognized that a class 

of nonlinear dynamical systems contain various 

uncertainties in which the system uncertainties 

can be divided into model-parametric (or structur- 

ed) uncertainties and unstructured uncertainties. 

Since most of present control schemes often 

ignore the uncertainties while robots in motion, 

these algorithms cannot be used in a wide range 

* Professor, Department of Mechanical Engineering, 
Korea Maritime University, Yeongdo-Ku, Pusan 
606-791. Korea 

** Research Center for Ocean Industrial Develop- 
ment, Pukyong National University 599-1 
Daeyeon-dong, Nam-gu, Pusan, Korea. 

of operating conditions. 

Among the various approaches to the control 

of robotic manipulators,  model-based controls 

have been presented. Feedforward compensation 

and computed torque techniques are well known 

examples of the model-based method. Early 

researches on this approach (without system un- 

certainties) were performed by Craig et al. and 

among others. However, under significant uncer- 

tainties, the tracking performance of the robot 

system will be significantly impaired and may 

even become unstable. During the last decade of 

research, a great deal of  effort has been expended 

on the control problem for dynamical systems in 

cases where physical models are not completely 

known.(Corless, 1983 ; Chen, 1990 ; Abdallah, 

1991 ; Spong,1992 ; Shi, 1992; Qu, 1992 ; You, 

1994a ; loannou, 1984 ; Ortega, 1989 ; Sadegh, 

1990 ; You, 1994b) In this study, we introduce the 

control strategy for uncertain robot systems based 

on the deterministic approach.(Corless, 1983; 

Chen, 1990; Abdallah,  1991; Spong,1992; Shi, 
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1992; Qu, 1992; You, 1994a; Sadegh, 1990; 

You, 1994b) One useful design method for 

controll ing uncertain systems is variable structure 

(VS) controls (Qu, 1992; You, 1994a; You, 

1994b) ; however, most of  the controllers gener- 

ally require a priori knowledge of uncertainty 

bounds. More recently, Abdal lah et al. give a 

survey of robust controls for robotic manipula- 

tors. Other way to overcome model-parametric 

uncertainties is to use adaptive control methods. 

Up to this point, a considerable amount of study 

has been done on the adaptive control scheme. 

(Craig, 1987; Corless, 1983; Chen, 1990; loan- 

nou, 1984; Ortega, 1989; Sadegh, 1990) But to 

the authors'  knowledge, the current studies rely 

heavily on estimating the model-parameters of 

system (i.e., centralized adaptive control). Ortega 

and Spong (Ortega, 1989) present a recent review 

of adaptive robot control. Instead, a decentralized 

control technique will be introduced in this work. 

To date, there have been few studies (Shi, 1992; 

You, 1994b) discussing the stability issues of the 

robust adaptive controller under higher-order 

system uncertainties, and several major problems 

still remain. Specifically, it has been shown that 

the control strategies, such as adaptive controls 

and robust controls, have the following short- 

comings from the practical point of view: cope 

with relatively small uncertainties ; utilize 

computat ionally complex algori thms; synthesize 

purely discontinuous controllers ; require a priori 

knowledge of the uncertainty bounds. 

The purpose of the study is to further investi- 

gate and characterize the robust motion tracking 

control for uncertain robotic manipulators in 

which the system uncertainties are characterized 

deterministically. Addit ional ly,  the corresponding 

control laws will overcome all the defects found 

in earlier design. The control algorithms present- 

ed consists of two major components:  model- 

based feedforward plus PD controller is first 

synthesized to stabilize the nominal system ; then 

the robust nonlinear control law is introduced to 

handle the system uncertainties. The uncertainties 

assumed here are bounded by higher-order 

polynomials in the norms of system states. Since 

no information on the uncertainty bounds is 

available, the adaptive bounds of the robust con- 

trollers are presented to directly update the un- 

known bounds on line. The present study offers 

clear evidence that the corresponding closed-loop 

systems are at least uniformly ultimately bounded 

under significant uncertainties. 

This paper is organized as follows: Back- 

ground and problem formulations are presented 

in Sec. 2. In Sec. 3, without possible knowledge of  

the uncertainties, the adaptive versions of the 

robust controllers are formulated. In Sec. 4, simu- 

lation results are presented and discussed. 

Finally, the conclusions of this work are summar- 

ized in Sec. 5. 

2. Background and Problem 
Formulat ions 

As noted in the previous paper ( l ) ,  the 

dynamic model of an n-link rigid manipulator is 

compactly shown to be 

M ( q ;  O)il"+C(q, (1; 0)(1 
•  (O)+ Tu(q, ( 1 ) - T ,  V/_>0 (1) 

where q, (1, and // '~-N" are the joint  position, 

velocity, and acceleration vectors, respectively;  

M ( q ;  O ) ~ R  .... is the inertia matrix; C(q, (1; 
0 )  (1 ~ R" is the vector of the Coriolis/centrifugal 

forces ; G(q ; (O)cN" is the gravity force vector ; 

T ~ R "  is the joint  torque vector; T,(q, (1)~R ~ 
represents the vector of the unstructured uncer- 

tainties, which is generally not considered in most 

of  other control design ; O is an m • 1 vector of  

robot parameters. Note that the physical mean- 

ings of all terms in Eq. (1) as well as its funda- 

mental properties have been given previously in 

detail. 

Now, some assumptions are made for the subse- 

quent problem formulations. 

J A I l :  The unstructured uncertainties (T~) 
strongly influences system performance. 

It is worth noting the fact that the structure of T~ 

assumed here will be bounded by higher-order 

polynomials in the system states rather than obey- 

ing either constant magnitude or first-order 

polynomials. 

[A2~ : The  t rue  p a r a m e t e r  vec to r ,  0 =  
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[O~&...O,,] T is assumed to be unknown as the 

manipulator  moves. In addition, the variation of  

0, is within the range g<: =[0 , ,  O~]c:R, V i ~  

[1, m], where 0, and 0 ,  are the unknown positive 

constants. Therefore, we have g_r : = ~ • ... • ~F,, 

and O ~  ~ C A  ' "  in which ~ is particularly un- 

known nonempty set. 

[ A 3 ]  The desired trajectory (qac:_C 2 func- 

tion) and its derivatives are all continuous and 

uniformly bounded by 

d, =sup  II qd ][, d~=sup H Od J} and 
t z:0 l > 0  

d3=sup II 0~ II 
t > 0  

where d~, c]2 and da (<oo )  are especially un- 
known positive constants. 

From now on, a class of trajectory tracking 

errors are defined as fol lows:  e ~ R  '~ is the vector 

of  position tracking errors " ep q- -  q~, where qd 

R ~ is the desired position vector; the reference 

tracking errors, e,.<-:_R '~, are defined by e,-==0,L 
- F e p ,  with F : E E , ; ( ~ > O )  ; the sliding variable with 

vector, e , ~ R  '~, is defined as e~:=(1--e,-:=e~, 

+ Fet,. 
Provided that some system states (q, (I) are 

available from measurements and also that the 

desired paths (q~, qa, //'d) are all smooth and 

bounded functions of time (<---L~). Then this 

study describes a design methodology for trajec- 

tory tracking controllers, which reduces the sensi- 

tivity of the closed-loop system to uncertainties 

and assures the following system behax i o r  Given 

the system dynamics (1) with some or all robot 

parameters being unknown, we present the robust 

nonlinear control algorithm, T : : h ( t ,  q, (1, Ctd, 

qd, //'a; 00), t ~ 0 ,  in such a way that every 

trajectory in the closed-loop system is kept within 

desirable tolerance r -p  and ~: ~ R  ~ (with smal- 
lest values possible). For example, the solutions 

of the corresponding closed-loop system are at 

least uniformly ultimately bounded under the 

significant uncertainties by (Corless, 1983 ; Chen, 

1990; You, 1994c; Sastry, 1989) 

[imsup II ep(t)  [[ -< r p and 

l imsup ]j (~v(l)11 ~ r v Fig. 1 

where the tolerance can be considered as a mea- 

sure of closeness of the system tracking errors to 

asymptotic (or exponential)  stability (i.e., i;p =/; 
~-=0). And 00 is the nominal (or fixed) values of 

O (in which Oo and 6) are defined on the same 

sets), and h is the vector of nonlinear functions in 

In designing a robust controller for an uncer- 

tain system, we generally need the knowledge of 

possible upper bounds on the uncertainties. Espe- 

cially in deterministic method, robust control 

algorithms are developed by measuring size of 

uncertainties, which are typically characterized in 

the appropriate norms. 

As mentioned above, the design objective is to 

formulate a class of control input vector so that 

the actual system responses track the desired 

quantities as closely and fast as possible. In this 

study, the general control structure (see Fig. 1) is 

given by (You, 1994a ; You, 1994b) 

T -  T,,,+ T~, t ~ 0  (2) 

Tm=Mo(q~"  Oi,)b,- i-Co(qa, O a  @o)e,. 

+ Go(qd " 0 o ) -  Ke,~ 

in which M,,, C~ and 6:o denote the estimated 

versions (not via adaptation mechanism) of the 

true values M, C, and G, respectively ; the feed- 

back gain matrix K = K E , ,  is chosen by the sys- 

tem designer ( K > 0 ) .  Thus the first part of the 

control law ( T , J  consists of model-based feedfor- 

ward compensation and PD feedback t e r m s  and 

the auxiliary control input is given by T n = - f  

(ep, e,,, e j ,  where f ~ R "  are some nonlinear 

functions on (e> e~,, e J ,  which will be specified 
later in details. An important aspect to realize is 

that the control algorithm under consideration is 

Block diagram of the proposed control algor- 
ithm with the adaptive bounds of robust 
controllers 
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sum of two major parts" the primary control 

vector, T m ~ R  ~, is designed to stabilize the 

nominal system without the uncertainties, and the 
robust nonlinear control, T ~ R  ~, which is cho- 

sen to be a continuous or discontinuous function, 

is intended to account for both the compensation 

error (or modeling error) and unstructured uncer- 

tainties. This two-stage control scheme is intended 

to achieve better robustness as well as tracking 

performance to significant uncertainties. In the 
case that Mo= Co = Go=0 in (2), the control struc- 

ture is simply reduced to T = - K e ~ + T , .  In 

addition, if ~ 0, then T = M o 6 ~ + C o e ~ + G o  

- -  K e s ,  

After some algebraic manipulat ions,  the 

closed-loop error dynamics can be compactly 

expressed as 

M ( q  ; O) d~ = -  C ( q ,  (1 ; O)e.~ 
- ( T ~ +  TD K e ~ +  ~ (3) 

where 

T ~ : [ M -  M0] e'~+ [ C -  C0] 0, 
+ [ a - G,,] (~) 

which represents the structured uncertainties due 

to model-parametric variations (or incorrect 

parameter values). In real systems, it should be 

noted that Ts#-O, that is, the estimated parameter 

values do not match the actual ones. 

As stated earlier, the robust control approaches 

usually require the evaluation of possible upper 

bounds on the system uncertainties, which is 

shown in the paper (1). Suppose that the extended 

tracking error vector, z ~ R  z', is defined as 3 =  

Jef f ,  d J ]  r - In what follows, we will give the 

possible upper bounds on the uncertainties. 

Lemma 1 : The structured uncertainties (T~) are 

bounded in the form 

II T~II--<a0+al II z-II +a~il z l l==~=  
where a, are unknown positive constants, which 

depend on the size of parametric variations and 

desired trajectories while the robot manipulator 

moves. 
Proof: See the paper (1) for the complete proof. 

[A4] : The unstructured uncertainties (T~) are 

given as 

Ir T,, II <<- bo + b, II-z-ll + " ' + b i n  ]j z ll '~ 

where b,. are unknown positive constants, and m 

is the highest order of ~u in the system uncer- 

tainties. 

Based on the above observations, we can obtain 

the following result. 

Lemma 2: The combined uncertainties are 

bounded by 

II T~ + T~ l] -< ]] T~ II + ]] T~ ]1 -< Co 

+ ol II z II + "  + c,~ l[ z It ~ 

where c, ( i=O, ' - - ,m)  are especially unknown 

constants; thus, (I)~.(~R')  is a continuous and 

unknown scalar bounding function. 

Proof: See the paper (1) for the detailed proof. 

As a result, the combined uncertainties are 

bounded by higher-order polynomials in the 

norms of the system states with the unknown 

coefficients c ~  R '~+~. 
In our studies, two robust design schemes are 

employed to postcompensate for the significant 

uncertainties in ( 3 )  The possible upper bounds 

on the uncertainties are assumed to be known for 

the nonadaptive robust control law (T~), as 

given in the paper (I). Without knowledge of the 

bounds, the adaptive bounds of the robust con- 

trollers (~r,) will be designed to directly estimate 

the uncertainty bounds in this paper (IlL where 

the circumflex ( o )  represents the estimated ver- 

sion of ( � 9  by adaptive law. 

3. Robust Controllers with Adaptive 

Uncerta inty  Bounds 

In the previous paper (I), we studied the robust 

nonlinear controller based on a pr ior i  knowl- 

edge of uncertainty bounds. Generally, the system 

uncertainties are completely unknown, thus the 

least upper bounds may not be easily obtained 

nor feasible to draw. tn this section and through- 

out the rest of the paper, by relaxing prerequisite 

on the uncertainties, we concisely extend the 

results of the paper (1) to the control method with 

adaptive uncertainty bounds. This methodology 

is called a decentralized robust adaptive control- 

ler, which combines VS-type robust control and 
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adaptive control techniques. 

The structural properties of the uncertainty 

bounds are given previously, i.e., 

II T~ II + II T~ II < - ~ ,  

On the other hand, the vector of uncertainty 

bound coefficients, c (or ~ ) ,  is completely un- 

known rather than being assumed known. For  

developing adaptive mechanism on the uncer- 

tainty bounds, we define new functions U~r~  

R "+~ as U,+: = [ [ N z l l " - I I  Z-lira], which is 
referred to as the "regressor-like funciion".(You, 

1994c) And the unknown coefficient vector e ~  

R "~a is given as 

c = [ c 0  c, '-" c,,,]L c , ~ - R  + 

Hence the uncertainty bounds in Lemma 2 are 

further expressed as 

E ~ 0 c ,  II z-II ~ = ~ =  u~e 

which represents the linear parameterization of 

the unknown bounding function. Moreover, the 

estimated version via adaptive law is 

r e> d,3.-=:b56(t)  

where Y ( t ) = [  & , - "  ? , , ] r  is the estimated vector 

of c. Now, the vector of uncertainty bound errors, 

O ~ R  '~-~, can be defined by 6 ( t ) - - c  6(/ ) .  
Then, we choose a modified adaptation algorithm 

(You, 1994b) to update the unknown gains on- 

line : 

6(t)-PAb~' 11 e~ll - c o ~ o )  (5) 

where the adaptation gain p,~.~l? ~+ ~)~<'~+ ~j may 
be selected as a positive-definite matrix. It is 

important to note that the fixed leakage term w,~ 

( > 0 )  belongs to g-modification law,(Chen, 1990 ; 

loannou, 1984 ; You, 1994b) which is intended to 

provide the robustness against the uncertainties. 

To ensure the aforementioned design objective, 

the robust postcompensation with adaptive bound 

is given by (see Fig. l )  

2 

;T'= - t [  e,+7-r ~-' t ~>0 (6) 

with 7](t)-- (pexp( Kt), where the free parameters 

(o" and x) are non-negative constants. In this 

algorithm, a conservative functional structure on 

~ may be assumed to deal with any higher-order 

uncertainties. In case of ~7=0 (or a = 0 ) ,  the 

control action becomes a purely VS-type control 

law, which is discontinuous on the surface e~=0. 

In practice, it causes undesirable phenomena, 

such as chattering associated with excessive con- 

trol activity and exciting high-frequency un- 

modelled dynamics, Now, we provide the main 

results in the following theorem. 

Theorem: With the unknown constants c on 

the uncertainty bounds, the solutions of the 

closed-loop system (3) with (5) and (6) are at 

least uniformly ultimately bounded ; that is, every 

solution starting in H C approaches the compact 

(closed and bounded) set H ,  and thereafter 

remains for all future time in H : 

H {(e., / : )~R':~,R<'~+'~:  V-< i / s}  

in which 

v~0(c~>0,  K - 0 ) ;  V , - = t c s + ~ ) / &  

and 

.... { ~r ~0~tc 

with @=(w~/2)II c II ~ and &--- min{2S,;/5, 

~ , j  ;, } 

Proof:  As a preliminary step to determine 

global stability of the closed-loop system, we 

select a kyapunov function candMate, V : (t ,  e,~, 

~ ) ~ R  + • R " •  R m+~-* R +, which is a scalar and 

differentiable function (at least C z f u n c t i o n )  

" I T w ! / =  / ~ y  y (7) 

where y T = [ e J 6 r ]  and W = B l o c k  diag[M, 

p,~-~]. Observing that M and p,, are all positive- 

definite matrices, we have 

' /,~i_ ll y ll ~ ~ 1/ ~ '1'~ ~ II Y II ~ 

where/l }tmm( W) > 0  and 2=Am~.~(W).Thus, 7" 
is a positive-definite function. Under these condi- 

tions, the derivative I? along the trajectories of 

the system can be easily computed as 

l / = e J M d , ~ +  '/ '2eJ]ffe~+ aTP~ ~ e 

Suppose that the adaptat ion law (5) are chosen. 

Then it is not difficult to show that 

(/=e.~r{ C e s - ( T , +  T~) 

r  2e~ } . T 1  T " 
-Ke,~ [[ e~ I[ ~s + ~ /2e~ Me~. 
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- ~ ' ( u s  II e ~  II - w ~ ( ~ )  ( 8 )  

in which we make use of  the fact that e . . . .  e 
(provided 6--0).  By invoking IP3] in paper (i), 
we immediately get 

(z ~ e J K e ~  + Ii e~ [I U~c 

II e., I[ r + 

which in turn yields 

~:" < - e J K e ,  + I1 e.~ [1 U.,c (or - 6 ~ ) Ufl  

II es II /I e~ II r + '~ 

~ &~ II e,~ II ~ 

§ co~ l] e IIII e II c9) 

Note that 

--o,,~ll all~+~o.,II alll l cJl-< ( 0 , , . / 2 )  
II ~ II~+(o,,,, ,'2) II c II ~ 

it fol lows by direct calculation that 

1~< - K II e,~ II e (co.J2) l] ~ II ~+ v 
+ (~oJ2 )  It c II ~ ( to)  

Let 

4--(w,~/2) [i c[I ~ and 4 o = m i n { 2 K / A ,  oJ~/A } 
where 4 ( ~ / d  ~) and 4o(>0). The differential in- 

equality can be written simply 

f~--< - -& V + ~ + 4  ( l l )  

In particular, if z24-0(a>0, /c=0), i.e., a bound- 
ary layer (or saturation-type) controller, then, for 

V/=(cr-~ 4)/4~> one simply verifies that 9 < 0 ,  
which is negative-definite, if and only if V >  I~- 
(or g c H C ) ,  V(e+., O ) ~ H  c. Consequently, the 
solution to (11) is given by 

V_< e x p ( - & t ) [ / 4 -  ( o +  ge)/&] 

+ ( a +  4)/40, t_>_o (12) 

where V~= Vt 0(o).  The corresponding u~timate 
bound is given by 

0 < l i m V  i n f V =  1,5.=(~+4)/~0_< ~5,<oo 
t - ~  t 

if r?:~0(cy>0, a->0), then the boundedness of V 
can be obtained by, for all [ ~>0 

V/<exp{ -- 40t)[ V0 - o-/(40-- K)-  ge/4oj +exp{ ~t)~7/(~,,--K)+ 4/ge0, 40r K 
1 _<_exp(- 40l)[ I/7, ~]+~T/exp( 4or) t-4, 4o /~ 

(13) 

Then the ultimate bounds are given by 

0< l im  V = i n f V =  I/Tr = ( o ' +  ~),/4a< Vo, 40:#x 
? ,o~ t 

and 0 ~ l i m K = i n f ! / =  I/) 4, 4o=x 

It should be noted that V converge to the compact 
set H exponentially with the rate of convergence 
depending on the values of  4o and K- Moreover, 

{ v;27-A-[ exp( 40 ' ) (Vf , -  cr ...... ~_.]+exp(__x/,( cr + ~)]~..z 
Ile, II < _ ' - L  ~ 4 0 - ~  r  ~r ~ , & : # K  

4'2fA[exp( 6d)(  V 0 - 4 ) + o t e x p ( -  & t ) + 4 ]  "~, ?o=~ 

from (12) and (13), the norm bounds of the joint 
tracking errors can be estimated as follows : 
In the case that z?~0(~7>0, K=0), we have 

II e~ II -< ,/2~AA {e• 4~t)[ V0- (~ + 4) /&]  
-~  ( (7 -~ ~ ) / 4 0 }  1/2 (14) 

Similarly, in case of z;#-0(~ >0, n>0) ,  we further 
obtain 

(15) 

Hence, it is clear from (14) and (15) that the 
norms of the trajectory tracking errors are attract- 
ed into the following compact set as t - +  oo : 
In the case that z;#-0(o->0, /c 0), the residual set 
is 

.(2(e,O ( e , ~ / ?  '~: lle~ll 
<[2(a-} 8)/A4] '/2} (16) 

And by selecting z?~0(~7>0, K>0) , it is readily 

verified that 

S 2 ( e 0 = {  e . ~ R " :  I[ e~rl _<2~/A&, &u-~ 

which completes the proof. In fact, the UUB 
results of  tracking errors (es) in which the radius 
of the closed balls depend on types of control 
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structures are obtained. The uniform ultimate 

boundednesses of other signals (6)  are also guar- 

anteed in similar fashions as in e,. As a conse- 

quence, the UUB results tbr system responses (es, 

6) are established with respect to V:.  Clearly, all 

signals in the closed-loop dynamics are finally 

attracted into the target ball H (also called region 

of attraction, domain of attraction, or basin) in 

finite time regardless of significant uncertainties. 

Furthermore, the size of the tracking errors can be 

reduced by manipulating the design parameters. 

Finally, we remark that: The UUB results of 

the tracking errors (e:, and e~,) can be deduced 

from that of e~ ; For the specific value z / - 0  (or c5 

=0)  in (11), it is readily shown that the closed- 

loop system is also unitbrmly ultimately bound- 

ed;  Furthermore, if z)::0 and re=0, then the 

global exponential stability result can be obtained 

as  

I im tl e:t)I{ : o  

which accordingly ensures that lira 1[ e:,(/)[[ =0  

and lira II e,..(t)II =:0,  where the region of attrac- 

tion is the whole space N". 

Fig. 2 

Fig. 3 

Joint position tracking errors 

Joint velocity tracking errors 

4. Numerical Simulations 

In this section, we will attempt to uncover 

essential issues by studying numerical simula- 

tions. The control algorithms are simulated on an 

uncertain two-link robotic arm whose dynamic 

model and configuration are given in the paper 

(I). The initial conditions for unknown constants 

e are given by e(0)=[C.0 0.0 0.0] *. And some 

numerical values of the design parameters are 

selected as 

K=200,  ~=2.0, z]:=0.1(o---0.1, /c=-0) 

U, =diag( 15.0, 5.0, 5.0) 

w: -2 .0 ( t ad / s ) ,  and Ws =0.1 

All other quantities including the design variables 

are the same as those used for the nonadaptive 

case (1). The simulation results are depicted in 

Figs. 2--6. We also provide simulation result in 

Fig. 7 to compare the performance of the 

proposed control laws with that of the PD con- 

troller with control gains being the same. It 

Fig. 4 Sliding surface variables (or joint tracking 
errors)  

Fig. 5 Control input torques 
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appears that the closed-loop system in PD control 

is unstable. As illustrated in simulation results, 

the adaptive bounds of robust controllers clearly 

outperforms the PD con t ro l l e r  and the 

nonadaptive version of  robust controllers (as in 

Paper(l))  in terms of the speed of the system 

responses (including the transient responses as 

well as the steady-state responses), the joint  posi- 

tion tracking errors, the joint  velocity tracking 

errors, and the sliding variable tracking errors. 

However, more intensive computat ions are 

required to update the uncertainty bounds in the 

adaptive control part (T,,). As a matter of fact, 

the robust controllers (as in Paper(l))  are simple 

to implement in practice compared to the control- 

lers proposed in Paper(l l)  and other centralized 

adaptive controllers. 

As final remarks, we have to state the following 

results (You, 1994c) The choices of q (or o" and 

/c) in (6) affect the transient and overall system 

responses: ii) Care should be taken in choosing 

specific values of 7j (or ~7 and /c) to avoid chatter- 

Fig. 6 Estimation of uncertainty bound coefficients 

Fig. 7 Joint position tracking errors under PD 
control law 

ing phenomena ; iii) The convergence of system 

responses, at least guaranteeing the UUB results, 

can be generally rated from fastest to slowest in 

order as follow, purely discontinuous controller 

(z,~--0 ; o'--0), smooth controller (r2#:0; 0 > 0 ,  /c 

>0),  and saturation-type controller (7)#=0; o '>0,  

x=0) .  

As shown in Figs. 7--8  of the paper (1), the 

drawbacks of a discontinuous control law in (6) 

(that is, as l ~ c ~ ,  7,--~0; exp( Kt)- - -0)  are 

that it causes undesirable phenomena such as 

chattering associated with excessive control activ- 

ity and exciting high-frequency unmodelled 

dynamics. Thus, even if the design parameters ( 7, 

~7, and /:) may be selected arbitrarily, the trade-off 

should be made between practical control energy 

(or chattering) and better system tracking perfor- 

mances (including the speed of the system 

responses) to meet the design specifications. 

5. Conclusions 

This research has been devoted to presenting 

dynamic compensation methodology for robust 

trajectory tracking controls of robot system when 

its physical model is not completely known. The 

proposed control scheme consists of  two major 

parts, that is, fully model-based feedforward plus 

PD compensation and adaptive versions of robust 

controllers. The robust control synthesis adopted 

is based on a deterministic approach in which the 

controllers can be implemented in a decentralized 

manner. By Lyapunov's second method, the sta- 

bility and robustness issues of the closed-loop 

system have been investigated extensively and 

rigorously. Summarizing, we state the following 

results : (i) the joint  accelerations are not required 

in the control laws ; (ii) the control laws do not 

require the exact information about the system 

parameters and the dynamic models ; (iii) torque 

computations in the model-based portion can be 

calculated off-line before control ;  (iv) if the 

possible bounds of uncertainties are assumed to 

be known, the nonadaptive versions of robust 

controllers (Paper(I)) are designed; if no infor- 

mation on these bounds is available, the adaptive 

versions of the robust controllers are presented to 
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directly estimate the unknown bounds (as in 
Paper(ll));  (v) the adaptive bounds of  robust 
controls can cope with any higher-order uncer- 
tainties in the system; (vi) it is shown that the 
proposed control laws can guarantee at least the 
UUB results of all signals under any higher-order 
uncertainties ; (vii) the robot manipulator is made 
to follow a class of desired trajectories fast while 
maintaining good tracking performance. Finally, 
the proposed control approaches encompass ear- 
lier results on the model-based feedforward com- 
pensations with the VS-type robust controllers as 

a special case. 
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